Find the equation of the tangent plane to the surface z=4−x2−2y2 at the point (1,−1,1)
Linear Approxmitaion
Let f(x,y)=xexy use the linear approximation to find an approximate value of f(1.01,−0.02)
using pointf(1,0)f(1.01,−0.02)−f(1,0)≈∂xf(1,0)(1.01−1)+∂yf(1,0)(−0.02−0)∂xf=exy+xyexy⟹∂xf(1,0)=1 using product rule∂yf=x2exy⟹∂yf(1,0)=1f(1.01,−0.02)−f(1,0)≈(0.01)−(0.02)
Differentials
For f(x,y)=2sinx+3cosy find f(2π,0) and use the differential df to find the approximate value of f(6029π,50π)