What are linear mappings
-
In general a linear mapping is
-
A linear mapping is a function L:Rn→Rm that preserves the linear combinations that is for all s,t∈R:
L(su+tv)=sL(u)+tL(v)
Range of a linear mapping
-
Let L:Rn→Rm be a linear mapping
- the range of L is the set ⟨L(x)∣x∈Rn)
- the kernal (or “nullspace”) of L is set ⟨x∈Rn∣L(x)=0)
- denoted Range(L) and ker(L),respectively
-
EX`
-
L(x,y,z)=(x+z,y) find the range(L) and Ker(L)
range(L)=([x+zy]∣x,y,z∈R)=([st]∣s,t∈R)=R2ker(L)=(xyz∣[x+zy]=[00])⟹x+z=0,y=0⟹z=t,x=−t
Examples
-
EX1
-
T(x,y,z)=(x−y,y−z) is a linear mapping because:
leta=a1a2a3,v=v1v2v3T(sa+tv)=T(sa1+tv1sa2+tv2sa3+tv3)