1(a) Generating Random Matrix and Vector to solve

Procedure:

  • A random (5 x 6) matrix (A) and a random (5 x 1) column vector were generated using MATLAB.
  • The augmented matrix was formed.
  • The Reduced Row Echelon Form (RREF) of the augmented matrix was calculated to determine the solution set of the system. Results: \tiny A = \begin{bmatrix} 9 & 5 & 5 & 3 & 5 & 8 \\ 7 & 4 & 5 & 7 & 10 & 3 \\ 4 & 8 & 7 & 7 & 4 & 6 \\ 1 & 2 & 8 & 2 & 3 & 9 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 10 \\ 6 \\ 2 \\ 2 \\ 3 \end{bmatrix} $$$$\tiny RREF(A|b) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1.3629 & 2.6597 \\ 0 & 1 & 0 & 0 & 0 & -1.5508 & -2.9987 \\ 0 & 0 & 1 & 0 & 0 & 1.6848 & 1.0419 \\ 0 & 0 & 0 & 1 & 0 & 1.1110 & 2.4740 \\ 0 & 0 & 0 & 0 & 1 & -1.6538 & -2.3151 \end{bmatrix} The solution set:
\end{bmatrix}=t\begin{bmatrix} -1.3629 \\ 1.5508 \\ -1.6848 \\ -1.1110 \\ 1.6538 \\ 1 \end{bmatrix}+\begin{bmatrix} 2.6597 \\ -2.9987 \\ 1.0419 \\ 2.4740 \\ -2.3151\\0 \end{bmatrix} $$ --- ##### 1(b) Textbook Question Section 2.1 B44 **Problem Statement:** A bookkeeper needs to determine the prices of armchairs, sofa beds, and double beds using the following information: $$\tiny \begin{cases} 20a + 10s + 8d = 15200 \\ 15a + 12s + 10d = 15700 \\ 12a + 20s + 10d = 19600 \end{cases} $$ **Procedure:** - Define the coefficients matrix (A) and the constants vector . - Form the augmented matrix. - Calculate the RREF of the augmented matrix to solve for prices of armchair ((a)), sofa bed ((s)), and double bed ((d)). **Results:** The RREF form of the provided matrix solution: $$ \tiny \begin{bmatrix} 1 & 0 & 0 & |300 \\ 0 & 1 & 0 & |600 \\ 0 & 0 & 1 & |400 \end{bmatrix} $$ Thus, the prices are: - Armchair: ( $300 ) - Sofa Bed: ( $600 ) - Double Bed: ( $400 ) --- #### Section 2: Linear Transformations and Projections ##### 2(a) Projection of Vectors **Procedure:** - Define vectors $(\mathbf{x}_1), (\mathbf{x}_2), (\mathbf{x}_3),$ and the projection vector$(\mathbf{v})$. - Calculate the projection matrix (P) for $(\mathbf{v})$. - Use the projection matrix to project $(\mathbf{x}_1), (\mathbf{x}_2)$, and $(\mathbf{x}_3)$ onto $(\mathbf{v})$. **Results:** $$ \tiny P(\mathbf{x}_1) = \begin{pmatrix} 1.0000 \\ 2.0000 \\ 3.0000 \end{pmatrix}, \quad P(\mathbf{x}_2) = \begin{pmatrix} 2.0000 \\ 4.0000 \\ 6.0000 \end{pmatrix}, \quad P(\mathbf{x}_3) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} $$ ##### 2(b) Composition of Projection and Rotation **Procedure:** - Define the rotation matrix (R). - Compute the composition matrices $([R \circ P])$ and $([P \circ R])$. **Results:** $$ \tiny [R \circ P] = \begin{pmatrix} 0.1857 & 0.3714 & 0.5571 \\ 0.1429 & 0.2857 & 0.4286 \\ 0.1286 & 0.2571 & 0.3857 \end{pmatrix}, \quad [P \circ R] = \begin{pmatrix} -0.0714 & 0.1429 & 0.2143 \\ -0.1429 & 0.2857 & 0.4286 \\ -0.2143 & 0.4286 & 0.6429 \end{pmatrix} $$ --- #### Section 3: Basis and Linear Combinations ##### 3(a) Basis of Column Space **Procedure:** - Define matrix (A) using given column vectors. - Calculate the RREF of (A) to determine which vectors form a basis. **Results:** The RREF form of (A): $$ \tiny \begin{pmatrix} 1 & 0 & 5 & 0 & 2 \\ 0 & 1 & -2 & 0 & 1 \\ 0 & 0 & 0 & 1 & -7 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} $$ Thus, the basis vectors for (S) are $([v1, v2, v4, v5])$ with dimension 3 and: $$ \tiny Basis:\begin{bmatrix} 3 & 6 & 2 \\ 2 & 5 & 0\\-1 & 1 & -1 \end{bmatrix}