3.5 Normal Distribution and Probability
Normal (Gaussian) Distribution
- A normal random variable X∼N(μ,σ2) has probability-density function (PDF)
f(x)=2πσ21exp[−2σ2(x−μ)2],−∞<x<∞.
- Standardisation: the z-score
z=σx−μ⟹Z∼N(0,1).
Cumulative-Distribution Function (CDF) of a Gaussian
- The CDF gives the probability that X does not exceed a threshold:
FX(x)=P(X≤x)=21[1+erf(σ2x−μ)],
where erf is the error function.
- In practice we consult the standard-normal table (or software) for P(Z≤z) and convert x→z using the formula above.
Lognormal Distribution
- Some phenomena grow multiplicatively rather than additively. If
W∼N(μ,σ2),X=exp(W),
then X is lognormal.
- PDF
f(x)=xσ2π1exp[−2σ2(lnx−μ)2],x>0.
- Mean and variance
E[X]=eμ+21σ2,Var[X]=(eσ2−1)e2μ+σ2.
Gamma Distribution
- The gamma function generalises the factorial:
Γ(r)=∫0∞xr−1e−xdx,r>0,Γ(r)=(r−1)Γ(r−1).
- With shape k>0 and rate λ>0, the gamma PDF is
f(x)=Γ(k)λkxk−1e−λx,x>0.
- Mean and variance
μ=λk,σ2=λ2k.
(For integer k the gamma reduces to an Erlang; for k=2n and λ=21 it produces the χ2 distribution.)
Beta Distribution
- A continuous distribution bounded on [0,1]; useful for proportions.
- PDF with shape parameters α>0,β>0:
f(x)=Γ(α)Γ(β)Γ(α+β)xα−1(1−x)β−1,0<x<1.
- Tuning α and β changes the shape:
- α=β=1 → uniform;
- α=β → symmetric about x=0.5;
- α<1 or β<1 → modes at the boundaries.
- Mean and variance
μ=α+βα,σ2=(α+β)2(α+β+1)αβ.
Binomial Distribution
- A discrete model for n independent Bernoulli trials (success with probability p, failure with 1−p).
- Random variable X = number of successes.
- Probability-mass function (PMF)
P(X=k)=(kn)pk(1−p)n−k,k=0,1,…,n.
- Mean and variance
μ=np,σ2=np(1−p).