1 Rotation and Reflection of Vectors

Procedure:

  • Rotation:
    • Start with the initial vector
    • Use a rotation matrix .
    • Compute successive vectors using .
    • Plot the vectors using different colors.
  • Reflection:
    • Reflect these vectors over the line ( y = 3x ) using the reflection matrix .
    • Compute the reflected vectors for ( i = 0, 1, 2, 3, 4, 5 ).
    • Plot the reflected vectors. Results:
  • 1(a) Plot of Rotated Vectors:
  • 1(b) Plot of Reflected Vectors:

2 Basis Transformation and Linear Mapping

Problem Statement: Given basis Procedure:

  • Compute the basis transformation matrix ( P_{S \to B} ).
  • Given the vector , compute its representation in basis ( B ).
  • Define the linear transformation:
  • Compute the matrix representation of ( L ) in the basis ( B ) and use it to find .

Results:

  • Transformation Matrix :
  • Coordinates of x in basis B:
  • Matrix Representation of ( L ) in Basis ( B ):
-4.9630 & -6.4444 & -17.8889 & 4.3704\\ -3.1852 & -4.7778 & -11.5556 & 0.1481\\ 2.8889 & 4.3333 & 10.6667 & -1.1111\\ 3.4074 & 6.1111 & 13.2222 & 0.0741 \end{bmatrix}$$ - **Transformed Vector $( (L(x))_B )$**:

\tiny Lx_{b}= \begin{bmatrix} -19.3333\ -9.3333\ 10.0000\ 11.3333\ \end{bmatrix}