Examples
-
Example 3.11 b:
- I=∫x(x−1)3x3−4x−1dx
- since there is a multiplicity 3 you must stretch it until the sum is the fraction
- → xA+(x−1)B+(x−1)2C+(x−1)3D
- ⇒ x3−4x−1=(x−1)3A+x(x−1)2B+x(x−1)C+xD
- multiplying through the denominator
- [x^3] 1=A+B ⇒B=0
- [x^2] 0=-3A-2B+C ⇒ C=3
- [x^1] -4 =3A+b-C+d ⇒ D=-4
- [x^0] -1=-A ⇒ A=1
- ⇒ the numbers in the front is from beginning in the coefficients of the corresponding multiplicity
- I=∫x1dx+∫(x−1)23dx+∫−(x−1)34dx
-
Example c.
- I=∫x4+x25x3−3x2+2x−1dx ⇒ we cant fully factor because its unfactorable quadratic ⇒ x2(x2+1)
- ⇒ xA+x2B+x2+1C+Dx
- ⇒5x3−3x2+2x−1⟹x(x+1)A+(x2+1)B+x2C+x3D
- [x^3] 5= A+D → D=3
- -3= B+C → C=-2
- 2=A
- -1 = B
- I+2ln∣x∣+x1−2arctanx+23ln(x2+1)+C
-
Example d.
- ∫x(x2+1)21dx
- ⇒ xA+x2+1B+Cx+x2+1D+Ex2
-
Example E