Ex.
-
a. ∫sin23xdx
- we can use the double angle identity to simplify the integrand cos2θ=1−2sin2θ ⇒ sin2θ=21−cos2θ
- ⇒ ∫21−cos6xdx ⇒ 21x−12sin6x+C
-
b. ∫cot23xdx⟹∫sin23xcos23xdx⟹∫sin23x1−sin23xdx
- ⇒ ∫csc23xdx−∫1dx=2−cot(3x)−x+C
Products of sines and cosines
-
To evaluate ∫sinnxcosmxdx, there are only two possibilities
-
(easy case) 1. use sin2+cos2=1 2. u-sub (Let u equal the even function)
-
At least one of the numbers n and m is odd
- ∫sin3xcos2xdx=
- ∫sinx(1−cos2x)cos2xdx
- ⇒ let u = cosx, du = -sinx dx
- ⇒ −∫(1−u2)u2du ⇒ ∫u4−u2du ⇒ 5cos5x−3cos3x+C
-
-
Both n and m are even
- ∫sin2xcos2xdx
- ⇒ ∫(1−cos2x)cos2xdx⟹∫cos2xdx−∫cos4xdx
- ⇒ ∫cos2xdx−(41cos3xsinx+43∫cos2xdx)
- ⇒ 41∫cos2xdx−41cos3xsinx
- ⇒ 41(21cosxsinx+21x)−41cos3xsinx+C
-
Ex.
-
a. ∫cos5xdx
- ⇒ ∫cos5xdx=∫cosx(1−sin2x)2dx
- let u = sinx, du = cosx
- ⇒ ∫(1−u2)2du
- ⇒∫1−2u2+u4du⟹u−32u3+5u5+C
-
Integrating other trig functions: